Selling Platforms

Hemant K. Bhargava
UC Davis

with Olivier Rubel
Platforms Symposium, Boston, July 2016
“SELLING” PLATFORMS

- exciting part of economy and society
- some grow virally, due to network effects, many must be “sold”
 - single-sided network goods: e.g., Kyruus
 - two-sided goods: e.g., OpenTable, American Well, CreditKarma
- “selling” is fraught with uncertainty, moral hazard ... managed via risk-sharing compensation plans (commission rate)
 - NE alter rewards, productivity and risk exposure of selling agent
 - what is the net influence on plan design?
 - how should network and platform firms manage sales agents?
“SELLING” PLATFORMS

- exciting part of economy and society
- some grow virally, due to network effects, many must be “sold”
 - single-sided network goods: e.g., Kyruus
 - two-sided goods: e.g., OpenTable, American Well, CreditKarma
- “selling” is fraught with uncertainty, moral hazard ... managed via risk-sharing compensation plans (commission rate)
- NE alter rewards, productivity and risk exposure of selling agent
 - what is the net influence on plan design?
 - how should network and platform firms manage sales agents?
BACKGROUND AND RESEARCH QUESTIONS

▶ platforms need to be “sold” (too)
▶ salesforce management literature: principal-agent model - does not recognize role of network effects
▶ our research: impact of NE on
 ▶ mix of guaranteed and performance-based incentives?
 ▶ risk and reward sharing between firm and agent?
▶ how should firm respond to externalities created by NE
BACKGROUND AND RESEARCH QUESTIONS

- platforms need to be “sold” (too)
- salesforce management literature: principal-agent model - does not recognize role of network effects
- our research: impact of NE on
 - mix of guaranteed and performance-based incentives?
 - risk and reward sharing between firm and agent?
- how should firm respond to externalities created by NE
RESULTS AND INSIGHTS

▶ network effects exert externalities on sales agent: increase both mean and variance of sales (⇒ compensation risk)
▶ spectrum of influence, depending on nature of network effects
 ▶ one-sided (direct) vs. two-sided (indirect) NE
 ▶ which side to meter for commission
 ▶ one vs. two agents
▶ firm’s ability to leverage network effects depends on balance between # externalities vs. # instruments to manage them.
CONCEPTUAL FRAMEWORK AND BENCHMARK CASE

Compensation design without network effects

- Agent’s influence on sales: \(Q = V + \beta w + \epsilon \)
 - \(V \) = base sales; \(\beta \) = agent’s productivity; \(\epsilon \approx N(0, \sigma^2) \)

- Risk-averse agent, earns \(\omega(w) = \alpha_0 + \alpha_1 Q \), picks effort level \(w^* \)

 \[
 \left(\text{max. } U(\omega(Q), w) = -e^{-\rho(\omega(Q) - C(w))} \geq R \right) \Rightarrow \ w^* = \beta \alpha_1
 \]

- Firm designs \((\alpha_0, \alpha_1) \) to max. \(\mathbb{E}[\Pi] = \mathbb{E}[Q] - (\alpha_0 + \alpha_1 \mathbb{E}[Q]) \)

 \[
 \Rightarrow \alpha_1^* = \frac{\beta^2}{\beta^2 + \rho \sigma^2}; \quad \Lambda_0 = \frac{\alpha_1 \mathbb{E}[Q]}{\alpha_0 + \alpha_1 \mathbb{E}[Q]} = \frac{2\beta^2}{\beta^2 + \rho \sigma^2} \frac{\beta^4 + V(\beta^2 + \rho \sigma^2)}{\beta^4 + 2R(\beta^2 + \rho \sigma^2)}
 \]

Hemant K. Bhargava UC Davis 07/14/2016 Selling Platforms
CONCEPTUAL FRAMEWORK AND BENCHMARK CASE

compensation design without network effects

- agent’s influence on sales: \(Q = V + \beta w + \epsilon \)

 \(V = \) base sales; \(\beta = \) agent’s productivity; \(\epsilon \approx N(0, \sigma^2) \)

- risk-averse agent, earns \(\omega(w) = \alpha_0 + \alpha_1 Q \), picks effort level \(w^* \)

\[
\left(\text{max. } U(\omega(Q), w) = -e^{-\rho(\omega(Q) - C(w))} \geq R \right) \Rightarrow w^* = \beta \alpha_1
\]

- firm designs \((\alpha_0, \alpha_1)\) to max. \(E[\Pi] = E[Q] - (\alpha_0 + \alpha_1 E[Q]) \)

\[
\Rightarrow \alpha_1^* = \frac{\beta^2}{\beta^2 + \rho \sigma^2}; \quad \Lambda_0 = \frac{\alpha_1 E[Q]}{\alpha_0 + \alpha_1 E[Q]} = \frac{2\beta^2}{\beta^2 + \rho \sigma^2} \frac{\beta^4 + V(\beta^2 + \rho \sigma^2)}{\beta^4 + 2R(\beta^2 + \rho \sigma^2)}
\]
compensation design without network effects

- agent’s influence on sales: \(Q = V + \beta w + \epsilon \)

 \(V \) = base sales; \(\beta \) = agent’s productivity; \(\epsilon \approx N(0, \sigma^2) \)

- risk-averse agent, earns \(\omega(w) = \alpha_0 + \alpha_1 Q \), picks effort level \(w^* \)

\[
\left(\text{max. } U(\omega(Q), w) = -e^{-\rho(\omega(Q)-C(w))} \geq R \right) \Rightarrow \ w^* = \beta \alpha_1
\]

- firm designs \((\alpha_0, \alpha_1)\) to max. \(\mathbb{E}[\Pi] = \mathbb{E}[Q] - (\alpha_0 + \alpha_1 \mathbb{E}[Q]) \)

\[
\Rightarrow \alpha_1^* = \frac{\beta^2}{\beta^2 + \rho \sigma^2} ; \quad \Lambda_0 = \frac{\alpha_1 \mathbb{E}[Q]}{\alpha_0 + \alpha_1 \mathbb{E}[Q]} = \frac{2 \beta^2}{\beta^2 + \rho \sigma^2} \frac{\beta^4 + \mathbb{V}(\beta^2 + \rho \sigma^2)}{\beta^4 + 2R(\beta^2 + \rho \sigma^2)}
\]
SELLING ONE-SIDED NETWORK GOODS

Direct network effects, intensity η

- with $Q = V + \beta w + \eta Q^e + \epsilon$, and rational expectations,

$$q = \frac{V + \beta w}{1 - \eta} + \frac{\epsilon}{1 - \eta}; \quad \eta \text{ increases mean AND volatility}$$

- η makes agent more productive, puts in more work, $w^* = \beta \frac{\alpha_1}{1 - \eta}$

and has more compensation risk, $\text{Var}(\omega(q)) = \alpha_1^2 \frac{\sigma^2}{(1 - \eta)^2}$

How to adjust commission rate and reward structure?
► η has no effect on commission rate, $\alpha_1^* = \frac{\beta^2}{\beta^2 + \rho \sigma^2}$

\therefore costs (risk-disutility) and gains (compensation) both $\approx \frac{\alpha_1^2}{(1-\eta)^2}$

► firm takes more risk; more of agent’s compensation as fixed salary

► yet gives agent a greater share of earnings (... net profit increases)
SELLING NETWORK GOODS: RESULTS

- η has no effect on commission rate, $\alpha_1^* = \frac{\beta^2}{\beta^2 + \rho \sigma^2}$

 \therefore costs (risk-disutility) and gains (compensation) both $\approx \frac{\alpha_1^2}{(1-\eta)^2}$

- firm takes more risk; more of agent’s compensation as fixed salary

- yet gives agent a greater share of earnings (… net profit increases)
SELLING TWO-SIDED NETWORK GOODS (B,S)

cross-market network effects, intensity η_b, η_s

- agent hired to recruit side S participants, paid based on S sales

\[
Q_b = V_b + \eta_b Q_s + \epsilon_b \\
Q_s = V_s + \eta_s Q_b + \epsilon_s.
\]

- similar to network goods, agent works more, $w^* = \beta \frac{\alpha_1}{1-\eta_b \eta_s}$

and has more compensation risk, $= f(\eta_b, \eta_s)$

how to adjust commission rate and reward structure?
SELLING TWO-SIDED NETWORK GOODS: RESULTS

\[\alpha_1^* = \frac{\beta^2}{\beta^2 + \rho \left(\sigma^2_s + \sigma^2_b \eta^2_s \right)}; \quad \Lambda_2^* = 2 \frac{(V_s + V_b \eta_s)(1 - \eta_b \eta_s)}{\beta^2} + \frac{2\beta^2}{\beta^2 + \rho \left(\sigma^2_s + \sigma^2_b \eta^2_s \right)} \]

- \(\eta_b \) behaves like \(\eta \) ! (no impact on \(\alpha_1^* \)) but \(\alpha_1^* \) varies with \(\eta_s \) to internalize externality (agent not rewarded for \(Q_b \) which \(\eta_s \) affects)
- high \(\eta_b \) is good for firm (like \(\eta \)), but high \(\eta_s \) may not be!
- \(\therefore \eta_s \) affects \(Q_b \), not accounted for in agent’s compensation

\[\therefore \text{too many externalities, too few ways to manage the effects} \]
SELLING TWO-SIDED NETWORK GOODS: RESULTS

\[\alpha_1^* = \frac{\beta^2}{\beta^2 + \rho (\sigma_s^2 + \sigma_b^2 \eta_s^2)}; \quad \Lambda_2^* = 2 \frac{(V_s + V_b \eta_s)(1 - \eta_b \eta_s)}{\beta^2} + \frac{2\beta^2}{\beta^2 + \rho (\sigma_s^2 + \sigma_b^2 \eta_s^2)} \]

- \(\eta_b \) behaves like \(\eta \) ! (no impact on \(\alpha_1^* \)) but \(\alpha_1^* \) varies with \(\eta_s \) to internalize externality (agent not rewarded for \(Q_b \) which \(\eta_s \) affects)

- high \(\eta_b \) is good for firm (like \(\eta \)), but high \(\eta_s \) may not be!

\[\therefore \eta_s \text{ affects } Q_b, \text{ not accounted for in agent’s compensation} \]

too many externalities, too few ways to manage the effects
SELLING TWO-SIDED NETWORK GOODS: RESULTS

\[\alpha_1^* = \frac{\beta^2}{\beta^2 + \rho(\sigma_s^2 + \sigma_b^2 \eta_s^2)}; \quad \Lambda_2^* = 2 \frac{(V_s + V_b \eta_s)(1 - \eta_b \eta_s)}{\beta^2} + \frac{2\beta^2}{\beta^2 + \rho(\sigma_s^2 + \sigma_b^2 \eta_s^2)} \]

- \(\eta_b \) behaves like \(\eta \) ! (no impact on \(\alpha_1^* \)) but \(\alpha_1^* \) varies with \(\eta_s \) to internalize externality (agent not rewarded for \(Q_b \) which \(\eta_s \) affects)
- high \(\eta_b \) is good for firm (like \(\eta \)), but high \(\eta_s \) may not be!
 \[\therefore \eta_s \text{ affects } Q_b, \text{ not accounted for in agent’s compensation} \]

too many externalities, too few ways to manage the effects
TWO-SIDED INCENTIVES FOR TWO-SIDED GOODS?

- hire agent to recruit side S, but pay him also for B sales!

$$\omega(q_s, q_b) = \alpha_0 + \alpha_1 q_s + \alpha_2 q_b; \quad w^* = \beta \frac{\alpha_1 + \alpha_2 \eta_b}{1 - \eta_b \eta_s}$$

- higher $\eta_b, \eta_s \Rightarrow$ higher commission rate; $\alpha_1^* = \frac{1}{(1-\eta_s \eta_b)(1+\rho \sigma_s^2)}$

- “pay to play” ... $\alpha_2^* = -\alpha_1^* \eta_s$

- firm is better off with stronger network effects (both η_b and η_s)

second metric \Rightarrow better tuning for multiple externalities
TWO-SIDED INCENTIVES FOR TWO-SIDED GOODS?

- hire agent to recruit side S, but pay him also for B sales!

$$\omega(q_s, q_b) = \alpha_0 + \alpha_1 q_s + \alpha_2 q_b; \quad w^* = \beta \frac{\alpha_1 + \alpha_2 \eta_b}{1 - \eta_b \eta_s}$$

- higher $\eta_b, \eta_s \Rightarrow$ higher commission rate; $\alpha_1^* = \frac{1}{(1-\eta_s \eta_b)(1+\rho \sigma_s^2)}$

- “pay to play” ... $\alpha_2^* = -\alpha_1^* \eta_s$

- firm is better off with stronger network effects (both η_b and η_s)

second metric \Rightarrow better tuning for multiple externalities
TWO-SIDED INCENTIVES FOR TWO-SIDED GOODS?

- hire agent to recruit side S, but pay him also for B sales!

$$\omega(q_s, q_b) = \alpha_0 + \alpha_1 q_s + \alpha_2 q_b; \quad w^* = \beta \frac{\alpha_1 + \alpha_2 \eta_b}{1 - \eta_b \eta_s}$$

- higher $\eta_b, \eta_s \Rightarrow$ higher commission rate; $\alpha_1^* = \frac{1}{(1 - \eta_s \eta_b)(1 + \rho \sigma_s^2)}$

- “pay to play” ... $\alpha_2^* = -\alpha_1^* \eta_s$

- firm is better off with stronger network effects (both η_b and η_s)

second metric \Rightarrow better tuning for multiple externalities
MULTIPLE AGENTS FOR MULTIPLE TERRITORIES?

- agents \((i = 1, 2)\) exert indirect externality on each other, because participation is fueled by overall network size

\[
Q_i = V + \beta_i w_i + \eta (Q_1^e + Q_2^e) + \epsilon_i
\]

\[
Q_{si} = V_s + \eta_s Q_b + \beta_i w_i + \epsilon_{si}.
\]

- one-sided network goods: \(\eta\) does impact optimal commission rate (firm must use \(\alpha_1^*\) to manage externalities across agents)

- two-sided goods: \(\eta_b\) now impacts \(\alpha_1^*\)
SUMMARY: IMPACT OF NETWORK EFFECTS ON DESIGN

<table>
<thead>
<tr>
<th></th>
<th>One Agent</th>
<th>Two Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Good</td>
<td>$\frac{\beta^2}{\beta^2 + \rho \sigma^2}$</td>
<td>$\frac{\beta^2}{\beta^2 + \rho \sigma^2}$</td>
</tr>
<tr>
<td>Network Good</td>
<td>$\frac{\beta^2}{\beta^2 + \rho \sigma^2}$</td>
<td>$\frac{\beta^2(1-\eta)}{\beta^2(1-\eta)^2 + \rho(1-2(1-\eta)\eta)\sigma^2}$</td>
</tr>
<tr>
<td>Platform Good</td>
<td>$\frac{\beta^2}{\beta^2 + \rho (\sigma_s^2 + \sigma_b^2 \eta_s^2)}$</td>
<td>$\frac{\beta^2(1-\eta b \eta_s)}{\beta^2(1-\eta b \eta_s)^2 + \rho (\sigma_s^2(1-\eta b \eta_s)^2 + \eta_s^2 (\sigma_s^2 \eta_b^2 + \sigma_b^2))}$</td>
</tr>
</tbody>
</table>

optimal commission rate α_1^*
CONCLUSION AND GENERAL INSIGHTS

- network effects create externalities on selling outcomes and risks
- compensation plan design must account for network effects, in spectrum of ways depending on type of network good
- firm must deploy suitable number of incentives, and in suitable ways, to manage multiple externalities