Dynamic Platform Competition: Optimal Pricing and Piggybacking under Network Effects

Yifan Dou
School of Management, Fudan University, China

joint-work with
D.J. Wu - IT Management, Scheller College of Business, Georgia Tech, USA

4th Annual BU Platform Symposium, July 13th, 2017
Platform Competition Getting Heated

Piggybacking strategy in platform competition
Let's Go for a Ride...
TR Y LYFT FREE
Friendly, affordable rides within minutes.

Uber
Use Uber code: dbthn and get $5 off your first Uber ride.
CLICK HERE

Welcome Home
Rent unique places to stay from local hosts in 190 countries.

Airbnb $50 Free Coupon Code Working
Platform Strategies – Non-Pricing Controls: Piggybacking
“Piggybacking Strategy is ... connecting with an existing user base from a different platform and stage the creation of value unit in order to recruit those users to participate.”

-- *Platform Revolution* by Parker, Van Alstyne, and Choudary (2016)
“Piggybacking Strategy is ... connecting with an existing user base from a different platform and stage the creation of value unit in order to recruit those users to participate.”

-- *Platform Revolution* by Parker, Van Alstyne, and Choudary (2016)
Piggybacking - Importing Adopters from A Different Platform

Yifan Dou, D. J. Wu
Piggybacking - Importing Adopters from A Different Platform

Shared Access

- Embedding in A Bigger Platform
- Strategic Poaching
- Business Model Transformation

Yifan Dou, D. J. Wu

Piggybacking strategy in platform competition
Piggybacking - Importing Adopters from a Different Platform

Embedding in a Bigger Platform

Shared Access

Strategic Poaching

Business Model Transformation
Piggybacking - Importing Adopters from A Different Platform

Shared Access

Embedding in A Bigger Platform

Strategic Poaching

Business Model Transformation

Yifan Dou, D. J. Wu

Piggybacking strategy in platform competition
Piggybacking - Importing Adopters from a Different Platform

| Shared Access | Embedding in A Bigger Platform | Strategic Poaching |

Business Model Transformation

Yifan Dou, D. J. Wu

Piggybacking strategy in platform competition
Our Research Questions

In platform competition with network effects:

- How should platforms adjust **pricing** strategies over time when **piggybacking** is possible (i.e., piggybacking is exogenous)?

Our Research Questions

In platform competition with network effects:

- How should platforms adjust *pricing* strategies over time when *piggybacking* is possible (i.e., piggybacking is exogenous)?
 - Is the pricing competition intensified or alleviated?
Our Research Questions

In platform competition with network effects:

- How should platforms adjust pricing strategies over time when piggybacking is possible (i.e., piggybacking is exogenous)?
 - Is the pricing competition intensified or alleviated?
- What are the platform’s optimal piggybacking strategies (i.e., piggybacking is endogenous)?
Our Research Questions

In platform competition with network effects:

- How should platforms adjust pricing strategies over time when piggybacking is possible (i.e., piggybacking is exogenous)?
 - Is the pricing competition intensified or alleviated?
- What are the platform’s optimal piggybacking strategies (i.e., piggybacking is endogenous)?
 - Complementary or substitutable between offering lower discount and importing external traffic?
The Logic Flow of the Research

Stage 1: A simple two-sided competition model of symmetric pricing duopoly
The Logic Flow of the Research

Stage 1: A simple two-sided competition model of symmetric pricing duopoly

Stage 2: Allow one of the platforms to import a given number of adopters

Yifan Dou, D. J. Wu
Piggybacking strategy in platform competition
Stage 1: A simple two-sided competition model of symmetric pricing duopoly

Stage 2: Allow one of the platforms to import a given number of adopters

Research Question 1
How should platforms adjust pricing strategies when piggybacking is possible?
The Logic Flow of the Research

Stage 1: A simple two-sided competition model of symmetric pricing duopoly

Stage 2: Allow one of the platforms to import a given number of adopters

Stage 3: Allow one of the platforms to choose the number of imported adopters at a cost

Research Question 1
How should platforms adjust pricing strategies when piggybacking is possible?
The Logic Flow of the Research

Stage 1: A simple two-sided competition model of symmetric pricing duopoly

Stage 2: Allow one of the platforms to import a given number of adopters

Stage 3: Allow one of the platforms to choose the number of imported adopters at a cost

Research Question 1
How should platforms adjust pricing strategies when piggybacking is possible?

Research Question 2
What are the optimal piggybacking/Pricing Strategies?
A Brief Literature Review

- Vast literature on two-sided markets and platform competition

Non-pricing controls similar to piggyback strategies

Tipping strategy by building market momentum (Gawer and Cusumano 2008)

Adding initial developers to the software platform (Boudreau 2012)

Attracting early users with single-side functionalities (Hagiu and Eisenmann 2007) or advertising (Tucker and Zhang 2010)

integrating user base with a complementary platform (Li and Agarwal 2016)

This paper is the first attempt to explore piggyback strategy analytically under a multi-period and competitive setting
A Brief Literature Review

- Vast literature on two-sided markets and platform competition

- Non-pricing controls similar to piggyback strategies
 - Tipping strategy by building market momentum (Gawer and Cusumano 2008)
 - Adding initial developers to the software platform (Boudreau 2012)
 - Attracting early users with single-side functionalities (Hagiu and Eisenmann 2007) or advertising (Tucker and Zhang 2010)
 - Integrating user base with a complementary platform (Li and Agarwal 2016)

This paper is the first attempt to explore piggyback strategy analytically under a multi-period and competitive setting.
A Brief Literature Review

- Vast literature on two-sided markets and platform competition

- Non-pricing controls similar to piggyback strategies
 - Tipping strategy by building market momentum (Gawer and Cusumano 2008)
 - Adding initial developers to the software platform (Boudreau 2012)
 - Attracting early users with single-side functionalities (Hagiu and Eisenmann 2007) or advertising (Tucker and Zhang 2010)
 - Integrating user base with a complementary platform (Li and Agarwal 2016)

This paper is the first attempt to explore piggyback strategy analytically under a multi-period and competitive setting.

Yifan Dou, D. J. Wu
Piggybacking strategy in platform competition
A Brief Literature Review

- Vast literature on two-sided markets and platform competition:
- Non-pricing controls similar to piggyback strategies

This paper is the first attempt to explore piggyback strategy analytically under a multi-period and competitive setting.

Yifan Dou, D. J. Wu

Piggybacking strategy in platform competition
A Brief Literature Review

- Vast literature on two-sided markets and platform competition
- Non-pricing controls similar to piggyback strategies
 - Tipping strategy by building market momentum (Gawer and Cusumano 2008)
 - Adding initial developers to the software platform (Boudreau 2012)
 - Attracting early users with single-side functionalities (Hagiu and Eisenmann 2007) or advertising (Tucker and Zhang 2010)
 - Integrating user base with a complementary platform (Li and Agarwal 2016)

This paper is the first attempt to explore piggyback strategy analytically under a multi-period and competitive setting.
A Brief Literature Review

- Vast literature on two-sided markets and platform competition
- Non-pricing controls similar to piggyback strategies
 - Tipping strategy by building market momentum (Gawer and Cusumano 2008)
 - Adding initial developers to the software platform (Boudreau 2012)
A Brief Literature Review

- Vast literature on two-sided markets and platform competition

- Non-pricing controls similar to piggyback strategies
 - Tipping strategy by building market momentum (Gawer and Cusumano 2008)
 - Adding initial developers to the software platform (Boudreau 2012)
 - Attracting early users with single-side functionalities (Hagiu and Eisenmann 2007) or advertising (Tucker and Zhang 2010)

This paper is the first attempt to explore piggyback strategy analytically under a multi-period and competitive setting.
A Brief Literature Review

- Vast literature on two-sided markets and platform competition

- Non-pricing controls similar to piggyback strategies
 - Tipping strategy by building market momentum (Gawer and Cusumano 2008)
 - Adding initial developers to the software platform (Boudreau 2012)
 - Attracting early users with single-side functionalities (Hagiu and Eisenmann 2007) or advertising (Tucker and Zhang 2010)
 - Integrating user base with a complementary platform (Li and Agarwal 2016)
A Brief Literature Review

- Vast literature on two-sided markets and platform competition

- Non-pricing controls similar to piggyback strategies
 - Tipping strategy by building market momentum (Gawer and Cusumano 2008)
 - Adding initial developers to the software platform (Boudreau 2012)
 - Attracting early users with single-side functionalities (Hagiu and Eisenmann 2007) or advertising (Tucker and Zhang 2010)
 - Integrating user base with a complementary platform (Li and Agarwal 2016)

- This paper is the first attempt to explore piggyback strategy analytically under a multi-period and competitive setting
The Logic Flow of the Research

Stage 1: A simple two-sided competition model of symmetric pricing duopoly
Stage 1: A Simple Model of Symmetric Duopoly

- Two competing platforms: A and B
Stage 1: A Simple Model of Symmetric Duopoly

- Two competing platforms: A and B
- Platforms connect consumers (c) and providers (d)
Stage 1: A Simple Model of Symmetric Duopoly

- Two competing platforms: A and B
- Platforms connect consumers (c) and providers (d)
- The lifecycle of the platform technology lasts for two periods
Stage 1: A Simple Model of Symmetric Duopoly

- Two competing platforms: A and B
- Platforms connect consumers (c) and providers (d)
- The lifecycle of the platform technology lasts for two periods
- In period $i \in \{1, 2\}$, platform $k \in \{A, B\}$ charges access single-period access fee p_{ki}^c to consumers, and p_{ki}^d to the providers
Stage 1: A Simple Model of Symmetric Duopoly

- Two competing platforms: A and B
- Platforms connect consumers (c) and providers (d)
- The lifecycle of the platform technology lasts for two periods
- In period $i \in \{1, 2\}$, platform $k \in \{A, B\}$ charges access single-period access fee p_{ki}^c to consumers, and p_{ki}^d to the providers
- π_{ki}: platform k’s single-period profit in period i
Stage 1: A Simple Model of Symmetric Duopoly

- Two competing platforms: A and B
- Platforms connect consumers (c) and providers (d)
- The lifecycle of the platform technology lasts for two periods
- In period $i \in \{1, 2\}$, platform $k \in \{A, B\}$ charges access single-period access fee p_{ki}^c to consumers, and p_{ki}^d to the providers
- π_{ki}: platform k ’s single-period profit in period i
- Π_k: platform k ’s two-period overall profit
Stage 1: A Simple Model of Symmetric Duopoly

- In each period $i \in \{1, 2\}$, an identical mass of new consumers enter the market.

$\text{New consumer demand for platform } k \text{ in period } i$, $Q_{c_{k_i}}$: The cumulative consumer demand for platform k in period i, i.e., $Q_{c_k}^2 = \delta q_{c_k}^1 + q_{c_k}^2$.

Yifan Dou, D. J. Wu

Piggybacking strategy in platform competition
Stage 1: A Simple Model of Symmetric Duopoly

- In each period $i \in \{1, 2\}$, an identical mass of new consumers enter the market.
- Consumers intend to join one of the platforms (i.e., single-homing).
Stage 1: A Simple Model of Symmetric Duopoly

- In each period $i \in \{1, 2\}$, an identical mass of new consumers enter the market.
- Consumers intends to join one of the platforms (i.e., single-homing).
- A fraction (denoted by δ) of consumers will lose their interests and leave the platform market after period 1.
Stage 1: A Simple Model of Symmetric Duopoly

- In each period $i \in \{1, 2\}$, an identical mass of new consumers enter the market.
- Consumers intends to join one of the platforms (i.e., single-homing).
- A fraction (denoted by δ) of consumers will lose their interests and leave the platform market after period 1.
- q_{ki}^c: New consumer demand for platform k in period i, where $i \in \{1, 2\}$, and δ is the fraction of consumers who lose interest and leave the platform market after period 1.
Stage 1: A Simple Model of Symmetric Duopoly

- In each period $i \in \{1, 2\}$, an identical mass of new consumers enter the market
- Consumers intends to join one of the platforms (i.e., single-homing)
- A fraction (denoted by δ) of consumers will lose their interests and leave the platform market after period 1
- q^c_{ki}: New consumer demand for platform k in period i,
- Q^c_{k1}: The cumulative consumer demand for platform k in period i,
 i.e., $Q^c_{k2} = \delta q^c_{k1} + q^c_{k2}$
Stage 1: A Simple Model of Symmetric Duopoly

The consumer demand function can be written in a classic Hotelling setup with network effects

\[q_{Ai}^c = \frac{\rho}{2} \left(1 - \frac{p_{Ai}^c - p_{Bi}^c}{t} \right) \]
Stage 1: A Simple Model of Symmetric Duopoly

- The consumer demand function can be written in a classic Hotelling setup with network effects:

\[q_{Ai}^c = \frac{\rho}{2} \left(1 - \frac{p_{Ai}^c - p_{Bi}^c}{t} + \frac{\beta(Q_{Ai}^d - Q_{Bi}^d)}{t} \right) \]
Stage 1: A Simple Model of Symmetric Duopoly

The consumer demand function can be written in a classic Hotelling setup with network effects:

\[q_{Ai}^c = \frac{\rho}{2} \left(1 - \frac{p_{Ai}^c - p_{Bi}^c}{t} + \frac{\beta(Q_{Ai}^d - Q_{Bi}^d)}{t} \right) \]

- \(\rho \): total number of new arrivals in each period
- \(\beta \): the surplus derived by a consumer from the participation of each provider (i.e., consumer-side network effects)
Stage 1: A Simple Model of Symmetric Duopoly

- The consumer demand function can be written in an classic Hotelling setup with network effects

\[q_{Ai}^c = \frac{\rho}{2} \left(1 - \frac{p_{Ai}^c - p_{Bi}^c}{t} + \frac{\beta (Q_{Ai}^d - Q_{Bi}^d)}{t} \right) \]

- \(\rho \): total number of new arrivals in each period
Stage 1: A Simple Model of Symmetric Duopoly

The consumer demand function can be written in an classic Hotelling setup with network effects

\[q^c_{Ai} = \frac{\rho}{2} \left(1 - \frac{p^c_{Ai} - p^c_{Bi}}{t} + \frac{\beta (Q^d_{Ai} - Q^d_{Bi})}{t} \right) \]

- \(\rho \): total number of new arrivals in each period
- \(\beta \): the surplus derived by a consumer from the participation of each provider (i.e., consumer-side network effects)
Stage 1: A Simple Model of Symmetric Duopoly

The consumer demand function can be written in a classic Hotelling setup with network effects:

\[q_{Ai}^c = \frac{\rho}{2} \left(1 - \frac{p_{Ai}^c - p_{Bi}^c}{t} + \frac{\beta(Q_{Ai}^d - Q_{Bi}^d)}{t} \right) \]

- \(\rho \): total number of new arrivals in each period
- \(\beta \): the surplus derived by a consumer from the participation of each provider (i.e., consumer-side network effects)
- “Transportation” cost: \(t \)
Stage 1: A Simple Model of Symmetric Duopoly

- Providers believe that both platforms are identical
Stage 1: A Simple Model of Symmetric Duopoly

- Providers believe that both platforms are identical
- Providers have full flexibility to access each platform in each period (i.e., multi-homing)
Stage 1: A Simple Model of Symmetric Duopoly

- Providers believe that both platforms are identical
- Providers have full flexibility to access each platform in each period (i.e., multi-homing)
- Providers can join both platforms simultaneously
Stage 1: A Simple Model of Symmetric Duopoly

- Providers believe that both platforms are identical
- Providers have full flexibility to access each platform in each period (i.e., multi-homing)
- Providers can join both platforms simultaneously
- Q_{ki}^d: The platform demand on the provider side for platform k in period i
Multi-homing Provider: The Competitive Bottleneck
Provider-side demands

Provider demand in period $i \in \{1, 2\}$ for platform k is given by

$$Q_{ki}^d = \alpha Q_{ki}^c - p_{ki}^d$$
Provider demand in period $i \in \{1, 2\}$ for platform k is given by

$$Q_{ki}^d = \alpha Q_{ki}^c - p_{ki}^d$$

α: the profit made by a provider on every consumer (i.e., provider-side network effects)
Further Assumption

\[(\alpha + \beta)^2 < 4t,\]

which ensures the platform owner’s optimization problem is well-behaved.
Further Assumption

\[(\alpha + \beta)^2 < 4t,\]

- which ensures the platform owner’s optimization problem is well-behaved
- Standard in literature: e.g., Armstrong (2006) imposes
 \[(\alpha_1 + \alpha_2)^2 < 4t_1 t_2,\]
 Hagiu and Halaburda (2014) impose
 \[\alpha + \beta < 2,\] etc.
Using backward induction, we solve period-2 competition pricing equilibrium first

$$\max_{p_k^c, p_k^d} \pi_{k,2}(p_k^c, p_k^d | Q_{k1}) = p_{k2}^c Q_{k2}^c + p_{k2}^d Q_{k2}^d$$
Using backward induction, we solve period-2 competition pricing equilibrium first

\[
\max_{p_{k2}^c, p_{k2}^d} \pi_{k2}(p_{k2}^c, p_{k2}^d | Q_{k1}^c) = p_{k2}^c Q_{k2}^c + p_{k2}^d Q_{k2}^d
\]

Then solve for the period-1 pricing equilibrium

\[
\max_{p_{k1}^c, p_{k1}^d} \pi_{k1} + \lambda \pi_{k2} = p_{k1}^c Q_{k1}^c + p_{k1}^d Q_{k1}^d + \lambda \pi_{k2}((p_{k2}^c)^*, (p_{k2}^d)^*)
\]
Platform Profit Functions

- Using backward induction, we solve period-2 competition pricing equilibrium first

\[
\max_{p_{k2}^c, p_{k2}^d} \pi_{k2}(p_{k2}^c, p_{k2}^d | Q_{k1}^c) = p_{k2}^c Q_{k2}^c + p_{k2}^d Q_{k2}^d
\]

- Then solve for the period-1 pricing equilibrium

\[
\max_{p_{k1}^c, p_{k1}^d} \pi_{k1} + \lambda \pi_{k2} = p_{k1}^c Q_{k1}^c + p_{k1}^d Q_{k1}^d + \lambda \pi_{k2}((p_{k2}^c)^*, (p_{k2}^d)^*)
\]

- \(\lambda \in [0, 1] \): The discount factor
Stage 1: A Simple Model of Symmetric Duopoly

- Platforms are identical

Proposition 1

Under two-period symmetric duopoly, the optimal pricing strategies of platform $k \in \{A, B\}$ are given by

\[
\left(p_{c1}^k\right)^* = t - \alpha \left(3 \beta + \alpha\right) - \frac{t \delta}{(1 + \delta)(16 - \alpha^2 - 6 \alpha \beta - \beta^2)} \lambda^2,
\]

\[
\left(p_{d1}^k\right)^* = \alpha - \beta, \\
\left(p_{c2}^k\right)^* = (1 + \delta) \left[t - \alpha \left(3 \beta + \alpha\right) - \frac{t \delta}{(1 + \delta)(16 - \alpha^2 - 6 \alpha \beta - \beta^2)} \lambda^2\right],
\]

\[
\left(p_{d2}^k\right)^* = (\alpha - \beta)(1 + \delta)
\]
Stage 1: A Simple Model of Symmetric Duopoly

- Platforms are identical
- $\lambda > 0$ in period-1 profit maximization
Stage 1: A Simple Model of Symmetric Duopoly

- Platforms are identical
- $\lambda > 0$ in period-1 profit maximization

Proposition 1

Under two-period symmetric duopoly, the optimal pricing strategies of platform $k \in \{A, B\}$ are given by

$$
(p_{k1}^c)^* = t - \frac{\alpha(3\beta + \alpha)}{8} - \frac{t\delta(1 + \delta)(16t - \alpha^2 - 6\alpha\beta - \beta^2)\lambda}{12t - \alpha^2 - 4\alpha\beta - \beta^2},
$$

$$
(p_{k1}^d)^* = \frac{\alpha - \beta}{8};
$$

$$
(p_{k2}^c)^* = (1 + \delta) \left[t - \frac{\alpha(3\beta + \alpha)}{8} \right], \quad (p_{k2}^d)^* = \frac{(\alpha - \beta)(1 + \delta)}{8}.
$$
Stage 1: A Simple Model of Symmetric Duopoly

Corollary 1

Under symmetric duopoly, the following statements hold true:

1. There exists a threshold $\hat{\lambda}$ such that subsidizing consumers with a negative price becomes optimal when $\lambda > \hat{\lambda}$. The subsidizing strategy is not affected by λ in period 2;

2. It is optimal to subsidize providers if and only if $\alpha < \beta$.

Yifan Dou, D. J. Wu

Piggybacking strategy in platform competition
Stage 1: A Simple Model of Symmetric Duopoly

Corollary 1

Under symmetric duopoly, the following statements hold true:

1. There exists a threshold $\hat{\lambda}$ such that subsidizing consumers with a negative price becomes optimal when $\lambda > \hat{\lambda}$. The subsidizing strategy is not affected by λ in period 2;

$\alpha < \beta$.

Yifan Dou, D. J. Wu
Corollary 1

Under symmetric duopoly, the following statements hold true:

1. There exists a threshold \(\hat{\lambda} \) such that subsidizing consumers with a negative price becomes optimal when \(\lambda > \hat{\lambda} \). The subsidizing strategy is not affected by \(\lambda \) in period 2;

2. It is optimal to subsidize providers if and only if \(\alpha < \beta \).
Calibrating the Baseline Model with Prior Literature

<table>
<thead>
<tr>
<th></th>
<th>Consumer (Single-homing)</th>
<th>Provider (Multi-homing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
<td>Subsidize</td>
<td>Not Subsidize</td>
</tr>
</tbody>
</table>

Armstrong (2006) the competitive bottleneck
Calibrating the Baseline Model with Prior Literature

<table>
<thead>
<tr>
<th></th>
<th>Consumer (Single-homing)</th>
<th>Provider (Multi-homing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
<td>Subsidize</td>
<td>Not Subsidize</td>
</tr>
</tbody>
</table>

Armstrong (2006) the competitive bottleneck

Hagiu and Halaburda (2014) Considering α and β in single-period model

<table>
<thead>
<tr>
<th></th>
<th>Consumer (Single-homing)</th>
<th>Provider (Multi-homing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
<td>α or β</td>
<td>$\beta > \alpha$</td>
</tr>
</tbody>
</table>
Calibrating the Baseline Model with Prior Literature

Consumer (Single-homing) vs. Provider (Multi-homing)

<table>
<thead>
<tr>
<th>Period 1</th>
<th>Consumer (Single-homing)</th>
<th>Provider (Multi-homing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsidize</td>
<td>Not Subsidize</td>
<td></td>
</tr>
</tbody>
</table>

Armstrong (2006)

- The competitive bottleneck

Hagiu and Halaburda (2014)

- Considering α and β in single-period model

<table>
<thead>
<tr>
<th>Period 1</th>
<th>Consumer (Single-homing)</th>
<th>Provider (Multi-homing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α, β, λ</td>
<td>$\beta > \alpha$</td>
<td></td>
</tr>
</tbody>
</table>

Our two-period model

- Subsidize early, Charge later on the single-homing side

- α, β, λ | $\beta > \alpha$ | $\beta > \alpha$ | $\beta > \alpha$
The Logic Flow of the Research

Stage 1: A simple two-sided competition model of symmetric pricing duopoly

Stage 2: Allow one of the platforms to import a given number of adopters
Stage 2: Allow One Platform to Import A Given Number of Consumers

Platform A (called *rider*) is endowed with an initial installed base Q_0 on consumer side in the beginning of period 1.

\[
\begin{align*}
Q_{A1}^c &= Q_0 + q_{A1}^c = Q_0 + \rho \left[\frac{1}{2} + \frac{\beta (Q_{A1}^d - Q_{B1}^d) - \tilde{p}_{A1}^c + \tilde{p}_{B1}^c}{2t} \right] \\
Q_{B1}^c &= \rho - q_{A1}^c.
\end{align*}
\]
Stage 2: Allow One Platform to Import A Given Number of Consumers

- Platform A (called *rider*) is endowed with an initial installed base Q_0 on consumer side in the beginning of period 1.
- Platform B (called *dummy*) competes with an initial disadvantage on consumer side.

$$
Q^c_{A1} = Q_0 + q^c_{A1} = Q_0 + \rho \left[\frac{1}{2} + \beta \left(Q^d_{A1} - Q^d_{B1} \right) - \tilde{p}^c_{A1} + \tilde{p}^c_{B1} \right] \\
Q^c_{B1} = \rho - q^c_{A1}.
$$

We are interested in the partial derivatives $\Delta_{ci} = \frac{\partial (\tilde{p}_{ci})}{\partial Q_0}$ and $\Delta_{di} = \frac{\partial (\tilde{p}_{di})}{\partial Q_0}$ which reflect the impacts of piggybacking on pricing strategies.
Stage 2: Allow One Platform to Import A Given Number of Consumers

- Platform A (called \textit{rider}) is endowed with an initial installed base Q_0 on consumer side in the beginning of period 1.
- Platform B (called \textit{dummy}) competes with an initial disadvantage on consumer side.

\[Q^c_{A1} = Q_0 + q^c_{A1} = Q_0 + \rho \left[\frac{1}{2} + \frac{\beta (Q^d_{A1} - Q^d_{B1}) - \tilde{p}^c_{A1} + \tilde{p}^c_{B1}}{2t} \right] \]

\[Q^c_{B1} = \rho - q^c_{A1}. \]

- We are interested in the partial derivatives $\Delta^c_{ki} = \frac{\partial (\tilde{p}^c_{ki})^*}{\partial Q_0}$ and $\Delta^d_{ki} = \frac{\partial (\tilde{p}^d_{ki})^*}{\partial Q_0}$ which reflect the impacts of piggybacking on pricing strategies.
Pricing Impacts of Piggyback on Rider’s Strategy in Period 1

(a). Consumer-side Price Change

\[\Delta^c_{A1} > 0: \text{Rider raises the price} \]

\[\Delta^c_{A1} < 0: \text{Rider reduces the price} \]

\[(\alpha + \beta)^2 = 4t \]

(b). Provider-side Price Change

\[\Delta^d_{A1} > 0: \text{Rider raises the price} \]

\[\Delta^d_{A1} < 0: \text{Rider reduces the price} \]

\[(\alpha + \beta)^2 = 4t \]
Pricing Impacts of Piggyback on Dummy’s Strategy in Period 1

(a). Consumer-side Price Change

\[\Delta c_{B1} > 0: \] Dummy raises the price
\[\Delta c_{B1} < 0: \] Dummy reduces the price

\[\Delta c_{B1} = (\alpha + \beta)^2 = 4t \]

(b). Provider-side Price Change

\[\Delta d_{B1} > 0 \]
Dummy raises the price

\[\Delta d_{B1} < 0 \]
Dummy reduces the price

\[\Delta d_{B1} = (\alpha + \beta)^2 = 4t \]
Pricing Impacts of Piggybacking - Both Platforms Lower Prices

(a) Consumer-side Equilibrium Prices Change

\[\Delta c_A < 0, \Delta c_B < 0: \]

Both platforms reduce prices

\[(\alpha + \beta)^2 = 4t \]

(b) Provider-side Equilibrium Prices Change

\[\Delta d_A < 0, \Delta d_B < 0 \]

Both platforms reduce prices
Pricing Impacts of Piggybacking - Both Platforms Raise Prices

(a) Consumer-side Equilibrium Prices Change

\[\Delta c^A_1 > 0, \Delta c^B_1 > 0 \]
Both platforms raise prices

\[(\alpha + \beta)^2 = 4t \]

(b) Provider-side Equilibrium Prices Change

\[\Delta d^A_1 > 0, \Delta d^B_1 > 0 \]
Both platforms raise prices

\[(\alpha + \beta)^2 = 4t \]
Summary - Exogenous Piggybacking

<table>
<thead>
<tr>
<th>Period 1</th>
<th>Consumer Side</th>
<th>Provider Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both raise prices</td>
<td>$\alpha \gg \beta$</td>
<td>$\alpha < \beta$</td>
</tr>
<tr>
<td>Both reduce prices</td>
<td>$\alpha \ll t, \beta \ll t$</td>
<td>$\alpha > \beta$</td>
</tr>
<tr>
<td>One platform reduces the price</td>
<td>Dummy</td>
<td>Rider</td>
</tr>
</tbody>
</table>

Yifan Dou, D. J. Wu

Piggybacking strategy in platform competition
Summary - Exogenous Piggybacking

<table>
<thead>
<tr>
<th></th>
<th>Consumer Side</th>
<th>Provider Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both raise prices</td>
<td>$\alpha \gg \beta$</td>
<td>$\alpha < \beta$</td>
</tr>
<tr>
<td>Both reduce prices</td>
<td>$\alpha \ll t, \beta \ll t$</td>
<td>$\alpha > \beta$</td>
</tr>
<tr>
<td>One platform reduces the price</td>
<td>Dummy</td>
<td>Rider</td>
</tr>
<tr>
<td>Period 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both raise prices</td>
<td>Never</td>
<td>$\alpha < \beta$</td>
</tr>
<tr>
<td>Both reduces prices</td>
<td>All ${\alpha, \beta}$</td>
<td>$\alpha > \beta$</td>
</tr>
</tbody>
</table>
The Logic Flow of The Research

Stage 1: A simple two-sided competition model of symmetric pricing duopoly

Stage 2: Allow one of the platforms to import a given number of adopters

Research Question 1
How should platforms adjust pricing strategies when piggybacking is possible?
Piggybacking in competition might either intensify or alleviate the pricing competition between platforms, depending on the strength of cross-side network effects.
Piggybacking in competition might either intensify or alleviate the pricing competition between platforms, depending on the strength of cross-side network effects. It may lead symmetric platforms to concentrate on different sides of the markets.
Piggybacking in competition might either intensify or alleviate the pricing competition between platforms, depending on the strength of cross-side network effects.

It may lead symmetric platforms to concentrate on different sides of the markets.

In the long run (2nd period), the pricing competition becomes more intensified on the single-homing side.
Stage 1: A simple two-sided competition model of symmetric pricing duopoly

Stage 2: Allow one of the platforms to import a given number of adopters

Stage 3: Allow one of the platforms to choose the number of imported adopters at a cost

Research Question 1
How should platforms adjust pricing strategies when piggybacking is possible?
Stage 3: Endogenous Piggybacking

- When acquiring Q_0 is costly, we modify Rider’s period 1 objective function

$$\max_{p_{A1}^c, p_{A1}^d, Q_0} \Pi_{A1} = p_{A1}^c Q_{A1}^c + p_{A1}^d Q_{A1}^d - bQ_0^2 + \lambda \Pi^*_{A2},$$
Stage 3: Endogenous Piggybacking

When acquiring Q_0 is costly, we modify Rider’s period 1 objective function

$$\max_{p_{A1}^c, p_{A1}^d, Q_0} \Pi_{A1} = p_{A1}^c Q_{A1}^c + p_{A1}^d Q_{A1}^d - bQ_0^2 + \lambda \Pi^*_{A2},$$

bQ_0^2: the total investment for the acquisition of Q_0
Stage 3: Endogenous Piggybacking

- When acquiring Q_0 is costly, we modify Rider’s period 1 objective function

$$
\Pi_{A1} = p_{A1}^c Q_{A1}^c + p_{A1}^d Q_{A1}^d - bQ_0^2 + \lambda \Pi^*_A,
$$

- bQ_0^2: the total investment for the acquisition of Q_0

- We are interested in the partial derivatives $\Delta_{ki}^c = \frac{\partial (\tilde{p}_{ki})^*}{\partial b}$ and $\Delta_{ki}^d = \frac{\partial (\tilde{p}_{ki})^*}{\partial b}$ which reflect the complementarity or substitutability between piggybacking and pricing strategies
Proposition 2

When rider incurs a piggybacking cost of bQ_0^2, at equilibrium, the following holds when b increases.
Proposition 2

When rider incurs a piggybacking cost of bQ_0^2, at equilibrium, the following holds when b increases.

1. Rider’s Q_0^* decreases (i.e., $\frac{Q_0^*}{\partial b} < 0$);
Stage 3: Endogenous Piggybacking

Proposition 2

When rider incurs a piggybacking cost of bQ_0^2, at equilibrium, the following holds when b increases:

1. Rider’s Q_0^* decreases (i.e., $\frac{Q_0^*}{\partial b} < 0$);
2. On the consumer side, pricing discount and piggybacking is complementary (i.e., $\frac{(\tilde{p}_{c_{A1}}^*)}{\partial b} > 0$) only when $t < \hat{t}$ and $\frac{\beta}{\alpha} < \hat{u}$, otherwise they are substitutable;
Stage 3: Endogenous Piggybacking

Proposition 2

When rider incurs a piggybacking cost of bQ_0^2, at equilibrium, the following holds when b increases.

1. Rider’s Q_0^* decreases (i.e., $\frac{Q_0^*}{\partial b} < 0$);

2. On the consumer side, pricing discount and piggybacking is complementary (i.e., $\frac{(\tilde{p}_c^{A1})^*}{\partial b} > 0$) only when $t < \hat{t}$ and $\frac{\beta}{\alpha} < \hat{u}$, otherwise they are substitutable;

3. On the provider side, they are always substitutable (i.e., $\frac{\partial (\tilde{p}_d^{A_i})^*}{\partial b} < 0$) if and only if $\alpha > \beta$.
Consumer-side strategy (single-homing): Platforms should import either more or fewer consumers in together with a greater price discount, depending on the degree of horizontal differentiation and cross-side network effects.
Summary - Endogenous Piggybacking

- Consumer-side strategy (single-homing): Platforms should import either more or fewer consumers in together with a greater price discount, depending on the degree of horizontal differentiation and cross-side network effects.

- Provider-side strategy (multi-homing): Platform should always offer a smaller discount to providers when more consumers are imported.
The Logic Flow of The Research

Stage 1: A simple two-sided competition model of symmetric pricing duopoly

Stage 2: Allow one of the platforms to import a given number of adopters

Stage 3: Allow one of the platforms to choose the number of imported adopters at a cost

Research Question 1
How should platforms adjust pricing strategies when piggybacking is possible?

Research Question 2
What are the optimal piggybacking/Pricing Strategies?
We develop a formal model that intends to capture the novel piggybacking strategies arise from the sharing economy.
Summary

- We develop a formal model that intends to capture the novel piggybacking strategies arise from the sharing economy.
- Our model sheds lights to the following questions:
Summary

- We develop a formal model that intends to capture the novel piggybacking strategies arise from the sharing economy.
- Our model sheds lights to the following questions:
 - How piggybacking affect the dynamic pricing competition between platforms.
Summary

- We develop a formal model that intends to capture the novel piggybacking strategies arise from the sharing economy.
- Our model sheds lights to the following questions:
 - How piggybacking affect the dynamic pricing competition between platforms
 - It either intensifies or alleviates the pricing/subsidizing wars between platforms.
We develop a formal model that intends to capture the novel piggybacking strategies arising from the sharing economy. Our model sheds light on the following questions:

- How piggybacking affects the dynamic pricing competition between platforms?
 - It either intensifies or alleviates the pricing/subsidizing wars between platforms.
 - In the long run, the pricing war gets more heated.
Summary

- We develop a formal model that intends to capture the novel piggybacking strategies arise from the sharing economy.
- Our model sheds lights to the following questions:
 - How piggybacking affect the dynamic pricing competition between platforms
 - It either intensifies or alleviates the pricing/subsidizing wars between platforms
 - In the long run, the pricing war gets more heated
 - How to optimize pricing and piggybacking strategy in tandem
Summary

- We develop a formal model that intends to capture the novel piggybacking strategies arise from the sharing economy.
- Our model sheds lights to the following questions:
 - How piggybacking affect the dynamic pricing competition between platforms
 - It either intensifies or alleviates the pricing/subsidizing wars between platforms
 - In the long run, the pricing war gets more heated
 - How to optimize pricing and piggybacking strategy in tandem
 - Import more, subsidize more
Thank You!

Q & A